Multicriteria Risk-averse Optimization in Humanitarian Relief Network Design

Simge Küçükyavuz

Department of Industrial Engineering and Management Sciences

Northwestern University

Joint work with Nilay Noyan and Merve Meraklı

Simge Küçükyavuz and Merve Meraklı are supported by National Science Foundation Grant #1907463. Nilay Noyan acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under grant #115M560.

June 27, 2019

Noyan, Meraklı, Küçükyavuz

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

1/32

(ロ) (部) (E) (E) (E)

In Memoriam

Noyan, Meraklı, Küçükyavuz

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

Northwestern University

э

・ロン ・回 と ・ ヨン ・ ヨン

୬ ୯.୦° 2/32

Agenda

- Motivation: Risk-averse decision making in humanitarian logistics
- Two-stage stochastic programming under multivariate risk constraints
 - Delayed Cut Generation for Deterministic Equivalent Formulation (DCG-DEF)
 - Delayed Cut Generation with Scenario Decomposition (DCG-SD)
- Application to a pre-disaster relief network design problem
- Concluding remarks

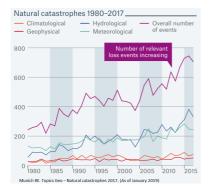
3/32

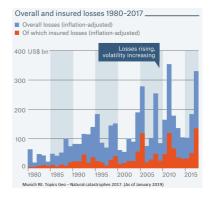
(ロ) (部) (E) (E) (E)

Natural disasters: Putting things into perspective...

1999 İzmit Earthquake in Turkey: More than 17,000 fatalities and an estimated 500,000 left homeless.

"In 2017, 335 natural disasters affected over 95.6 million people, killing an additional 9,697 and costing a total of US \$335 billion." CRED, Annual Disaster Statistical Review 2017.





イロト イポト イヨト イヨト

Need for efficient and effective disaster relief systems!

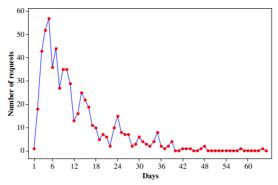
Noyan, Meraklı, Küçükyavuz

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

4/32

Natural disasters: Putting things into perspective...

- Large volumes of demand for relief items (medical supplies, water, food etc.) in the immediate aftermath of disaster.
- Transportation network could be severely damaged.



Number of requests for critical supplies after Hurricane Katrina (Holguín-Veras and Jaller, 2012)

5/32

Pre-disaster relief network design problem

- Common strategy: pre-positioning of relief supplies at strategic locations to improve the effectiveness of the immediate post-disaster response operations.
- At the time of decision making, there is **high level of uncertainty** in supply (undamaged pre-stocked supplies), demand, and transportation network conditions.
- Multiple critical issues for pre-disaster relief network design (aside from cost):
 - Meeting basic needs of most of the affected population,
 - Ensuring accessibility of the relief supplies,
 - Ensuring equity in supply allocation, etc.

・ロト ・同ト ・ヨト ・ヨト

- Multiple stakeholders with different perspectives
 - government, community, non-governmental organizations (NGOs), engineers, sponsors etc.

6/32

Risk-averse stochastic optimization in humanitarian logistics

- Would the decision makers be indifferent to a small probability that
 - A million people do not have access to medical care?
 - · Certain locations do not have access to medical care?

Risk-averse stochastic optimization in humanitarian logistics

- Would the decision makers be indifferent to a small probability that
 - A million people do not have access to medical care?
 - Certain locations do not have access to medical care?
- Need to consider a wide range of possible outcomes, not just the most likely or worst-case scenario, for multiple sources of risk.
- Risk-averse stochastic optimization problems provide the flexibility to capture a wider range of risk attitudes.

7/32

イロト イポト イヨト イヨト

Risk-averse stochastic optimization in humanitarian logistics

- Would the decision makers be indifferent to a small probability that
 - A million people do not have access to medical care?
 - Certain locations do not have access to medical care?
- Need to consider a wide range of possible outcomes, not just the most likely or worst-case scenario, for multiple sources of risk.
- Risk-averse stochastic optimization problems provide the flexibility to capture a wider range of risk attitudes.
- We aim to propose **risk-averse** optimization models and solution algorithms that consider
 - Multiple sources of risk (cost, accessibility, equity)
 - A group of decision makers with different opinions on the importance (weight) of each criteria (government, community, NGOs)
 - in a two-stage decision making framework.

7/32

<ロ> <同> <同> < 回> < 回> < 回</p>

• First-stage actions $(x) \rightarrow$ observe randomness \rightarrow Second-stage actions (y)(Pre-disaster) (Disaster) (Post-disaster)

- First-stage actions $(x) \rightarrow$ observe randomness \rightarrow Second-stage actions (y)(Pre-disaster) (Disaster) (Post-disaster)
- The first-stage decisions are made before the uncertainty is resolved.
 - e.g., humanitarian relief facility location and inventory level decisions.
- The second-stage (recourse) decisions are made after the uncertainty is resolved. Represent the operational decisions, which depend on the realized values of the random data.
 - e.g., distribution of the relief supplies (allocation decisions).

8/32

Noyan, Meraklı, Küçükyavuz

- First-stage actions $(x) \rightarrow$ observe randomness \rightarrow Second-stage actions (y)(Pre-disaster) (Disaster) (Post-disaster)
- A finite probability space $(\Omega, 2^{\Omega}, \Pi)$ with $\Omega = \{\omega_1, \ldots, \omega_m\}$ and $\Pi(\omega_s) = \rho_s, s \in S := \{1, \ldots, m\}.$

Noyan, Meraklı, Küçükyavuz

8/32

- First-stage actions $(x) \rightarrow$ observe randomness \rightarrow Second-stage actions (y)(Pre-disaster) (Disaster) (Post-disaster)
- A finite probability space $(\Omega, 2^{\Omega}, \Pi)$ with $\Omega = \{\omega_1, \ldots, \omega_m\}$ and $\Pi(\omega_s) = p_s, s \in S := \{1, \ldots, m\}.$
- The general form of a risk-neutral two-stage stochastic programming model:

$$\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x})+\mathbb{E}(Q(\mathbf{x},\boldsymbol{\xi}(\omega)))$$

 $Q(\mathbf{x},\boldsymbol{\xi}(\omega_s)) = \min_{\mathbf{y}_s \in \mathcal{Y}(\mathbf{x},\boldsymbol{\xi}(\omega_s))} \mathbf{q}_s^\top \mathbf{y}_s, \quad \mathcal{Y}(\mathbf{x},\boldsymbol{\xi}(\omega_s)) = \{\mathbf{y}_s \in \mathbb{R}^{n_2}_+ : T_s \mathbf{x} + W_s \mathbf{y}_s \ge \mathbf{h}_s\}$

8/32

Noyan, Meraklı, Küçükyavuz

Two-Stage Stochastic Programming with Multivariate Stochastic Preference Constraints

Given

- a benchmark (reference) random outcome vector $\mathbf{Z} \in \mathbb{R}^d$

- multivariate risk-based preference relation \succ

("A \succeq B" implies A is preferable to B w.r.t. its risk)

A class of risk-averse two-stage optimization problems:

ľ

$$\begin{array}{ll} \min & f(\mathbf{x}) + \mathbb{E}(Q(\mathbf{x}, \boldsymbol{\xi}(\omega))) \\ \text{s.t.} & \hat{\mathbf{G}}(\mathbf{x}, \mathbf{y}) \succcurlyeq \mathbf{Z}, \\ & \mathbf{x} \in \mathcal{X}, \\ & Q(\mathbf{x}, \boldsymbol{\xi}(\omega_s)) = \mathbf{q}_s^\top \mathbf{y}(\omega_s), \quad \forall s \in S, \\ & \mathbf{y}(\omega_s) \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}(\omega_s)), \quad \forall s \in S. \end{array}$$

Decision-based *d*-dimensional random outcome vector:

$$\left[\hat{\mathbf{G}}(\mathbf{x},\mathbf{y})
ight](\omega)=\hat{\mathbf{G}}(\mathbf{x},\mathbf{y}(\omega),oldsymbol{\xi}(\omega)).$$

Noyan, Meraklı, Küçükyavuz

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

9/32

イロト イポト イヨト イヨト

How to measure risk?

Conditional Value-at-Risk (CVaR) for assessing the univariate risk

- Desirable risk measure (Artzner et al., 1999; Kusuoka, 2001)
- Easy to incorporate into optimization problems (convexity)

10/32

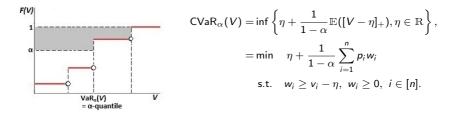
э.

How to measure risk?

Conditional Value-at-Risk (CVaR) for assessing the univariate risk

- Desirable risk measure (Artzner et al., 1999; Kusuoka, 2001)
- Easy to incorporate into optimization problems (convexity)

V: <u>univariate</u> random variable that takes value v_i with probability p_i , $i \in [n] := \{1, ..., n\}$. For confidence level α ,



CVaR_α(V): "If we are unlucky and do worse than α-quantile, then the expected outcome is CVaR_α(V)."

10/32

<ロ> <四> <四> <三> <三> <三</p>

Challenges

Noyan, Meraklı, Küçükyavuz

- How to define vector-valued risk?
 - Vector-valued VaR (p-efficient points) well-defined (Prekopa)
 - Meraklı and K. (2018) discuss issues with existing definitions of vector-valued CVaR (e.g., CVaR<VaR in some definitions)
 - and propose a new definition

11/32

Challenges

- How to define vector-valued risk?
 - Vector-valued VaR (p-efficient points) well-defined (Prekopa)
 - Meraklı and K. (2018) discuss issues with existing definitions of vector-valued CVaR (e.g., CVaR<VaR in some definitions)
 - and propose a new definition Hard to compute
- Need to compare two (decision-dependent) random vectors?

11/32

Establish preference relations between two *d*-dimensional random vectors

$$(X_1, X_2, \ldots, X_d) \succcurlyeq (Z_1, Z_2, \ldots, Z_d)$$

- Considering multiple risk factors, a natural approach is to use univariate preference relations under a *scalarization scheme*.
 - Linear scalarization for random vector $\mathbf{X} \in \mathbb{R}^d$ based on vector $\mathbf{c} \in \mathbb{R}^d$:

$$\mathbf{c}^{\top}\mathbf{X} = c_1 X_1 + \cdots + c_d X_d \quad \succ \quad \mathbf{c}^{\top}\mathbf{Z}.$$

- c_i: relative importance of criterion i
- How to choose **one c**?

Noyan, Meraklı, Küçükyavuz

12/32

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Establish preference relations between two *d*-dimensional random vectors

$$(X_1, X_2, \ldots, X_d) \succcurlyeq (Z_1, Z_2, \ldots, Z_d)$$

- Considering multiple risk factors, a natural approach is to use univariate preference relations under a *scalarization scheme*.
 - Linear scalarization for random vector $\mathbf{X} \in \mathbb{R}^d$ based on vector $\mathbf{c} \in \mathbb{R}^d$:

$$\mathbf{c}^{\top}\mathbf{X} = c_1X_1 + \cdots + c_dX_d \quad \succ \quad \mathbf{c}^{\top}\mathbf{Z}.$$

- c_i: relative importance of criterion i
- How to choose **one c**? Relative importance of risk factors (**c**) is usually **ambiguous** and may be **inconsistent** especially in the presence of multiple decision makers.

12/32

Establish preference relations between two *d*-dimensional random vectors

$$(X_1, X_2, \ldots, X_d) \succcurlyeq (Z_1, Z_2, \ldots, Z_d)$$

• Extend univariate stochastic preference relations to the multivariate case by considering a family of scalarization vectors, C.

13/32

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Establish preference relations between two d-dimensional random vectors

$$(X_1, X_2, \ldots, X_d) \succcurlyeq (Z_1, Z_2, \ldots, Z_d)$$

- Extend univariate stochastic preference relations to the multivariate case by considering a family of scalarization vectors, C.
- Require that the scalarized versions of vector-valued random variables conform to some scalar-based preference relation (Dentcheva and Ruszczynski, 2009).

Linear scalarization: $\mathbf{c}^{\top}\mathbf{X} = c_1X_1 + \cdots + c_dX_d \Rightarrow \mathbf{c}^{\top}\mathbf{Z} \quad \forall \mathbf{c} \in \mathcal{C}$

- Coefficient c_i represents subjective importance of criteria $i, i \in \{1, ..., d\}$.
- Set C corresponds to different opinions of possibly multiple decision makers on the relative importance of criteria.

Noyan, Meraklı, Küçükyavuz

Establish preference relations between two *d*-dimensional random vectors

$$(X_1, X_2, \ldots, X_d) \succcurlyeq (Z_1, Z_2, \ldots, Z_d)$$

- Our main focus: Univariate risk measure Conditional value-at-risk (CVaR) (Rockafellar and Uryasev, 2000, 2002).
- Polyhedral multivariate CVaR relation (Noyan and Rudolf, 2013): Given a set of scalarization vectors C ⊂ ℝ^d and a confidence level α ∈ [0, 1), X is preferable to Z if

$$\mathsf{CVaR}_{\alpha}(\mathbf{c}^{\top}\mathbf{X}) \leq \mathsf{CVaR}_{\alpha}(\mathbf{c}^{\top}\mathbf{Z}), \quad \forall \ \mathbf{c} \in \mathcal{C}.$$

• We introduce a new class of risk-averse two-stage stochastic programming problems with polyhedral multivariate CVaR constraints.

13/32

Related Studies on Optimization with the Multivariate Stochastic Benchmarking Constraints

- Multivariate second-order stochastic dominance(SSD)-constrained problems gained more attention in the literature (see, e.g., Dentcheva and Ruszczynski, 2009; Homem-de-Mello and Mehrotra, 2009; Hu et al., 2012; Dentcheva and Wolfhagen, 2015, 2016).
- SSD-based models are conservative and demanding, often leading to infeasibilities.
- A few studies consider **CVaR-based models** as a natural relaxation of the SSD-based models (see, e.g., Noyan and Rudolf, 2013; Liu et al., 2016).
- Some of the recent studies consider both (Küçükyavuz and Noyan, 2016; Noyan and Rudolf, 2016).
- All except Dentcheva and Wolfhagen (2015) study **single-stage (static)** decision making problems.

14/32

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Problem Formulation

x, y: first- and second-stage decision vectors, respectively

 $\boldsymbol{\xi}(\omega)$: random vector defined on a finite probability space with $\Omega = \{\omega_i : i \in S\}$ $\hat{\mathbf{G}}(\mathbf{x}, \mathbf{y})$: the *d*-dimensional random outcome vector representing the multiple random performance measures of interest associated with the first- and second-stage decisions

Z: a given benchmark (reference) random outcome vector

 \mathcal{C} : a given scalarization set, i.e. $\mathcal{C} \subseteq \mathcal{C}_f = \{ \mathbf{c} \in \mathbb{R}^d_+ \mid \sum_{i=1}^d c_i = 1 \}$

$$\begin{array}{ll} \min & f(\mathbf{x}) + \sum_{s \in S} p_s Q(\mathbf{x}, \boldsymbol{\xi}(\omega_s)) \\ \text{s.t.} & \operatorname{CVaR}_{\alpha}(\mathbf{c}^{\top} \hat{\mathbf{G}}(\mathbf{x}, \mathbf{y})) \leq \operatorname{CVaR}_{\alpha}(\mathbf{c}^{\top} \mathbf{Z}), \quad \forall \ \mathbf{c} \in \mathcal{C}, \\ & \mathbf{x} \in \mathcal{X}, \\ & Q(\mathbf{x}, \boldsymbol{\xi}(\omega_s)) = \mathbf{q}_s^{\top} \mathbf{y}(\omega_s), \quad \forall s \in S, \\ & \mathbf{y}(\omega_s) \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}(\omega_s)), \quad \forall s \in S, \end{array}$$

15/32

Problem Formulation

x, y: first- and second-stage decision vectors, respectively

 $\boldsymbol{\xi}(\omega)$: random vector defined on a finite probability space with $\Omega = \{\omega_i : i \in S\}$ $\hat{\mathbf{G}}(\mathbf{x}, \mathbf{y})$: the *d*-dimensional random outcome vector representing the multiple random performance measures of interest associated with the first- and second-stage decisions

Z: a given benchmark (reference) random outcome vector

 \mathcal{C} : a given scalarization set, i.e. $\mathcal{C} \subseteq \mathcal{C}_f = \{ \mathbf{c} \in \mathbb{R}^d_+ \mid \sum_{i=1}^d c_i = 1 \}$

$$\begin{array}{ll} \min & f(\mathbf{x}) + \sum_{s \in S} p_s Q(\mathbf{x}, \boldsymbol{\xi}(\omega_s)) \\ \text{s.t.} & \operatorname{CVaR}_{\alpha}(\mathbf{c}^{\top} \hat{\mathbf{G}}(\mathbf{x}, \mathbf{y})) \leq \operatorname{CVaR}_{\alpha}(\mathbf{c}^{\top} \mathbf{Z}), \quad \forall \ \mathbf{c} \in \mathcal{C} \\ & \mathbf{x} \in \mathcal{X}, \\ & Q(\mathbf{x}, \boldsymbol{\xi}(\omega_s)) = \mathbf{q}_s^{\top} \mathbf{y}(\omega_s), \quad \forall s \in S, \\ & \mathbf{y}(\omega_s) \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}(\omega_s)), \quad \forall s \in S, \end{array}$$

Challenge: Infinitely many CVaR constraints.

Noyan, Meraklı, Küçükyavuz

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

15/32

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 ・ のへで

Towards a Tractable Formulation

• It is sufficient to consider CVaR benchmarking constraints for a finite subset of C (Noyan and Rudolf, 2013).

 $\mathsf{CVaR}_{\alpha}(\mathbf{c}_{(l)}^{\top}\hat{\mathbf{G}}(\mathbf{x},\mathbf{y})) \leq \mathsf{CVaR}_{\alpha}(\mathbf{c}_{(l)}^{\top}\mathbf{Z}), \quad l = 1, \dots, \bar{L},$

where $\bm{c}_{(1)}, \bm{c}_{(2)}, \ldots, \bm{c}_{(\bar{L})}$ are projected extreme points of a higher dimensional polyhedron.

• Exponentially many constraints, corresponding to vertices of a polyhedron.

16/32

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Towards a Tractable Formulation

• It is sufficient to consider CVaR benchmarking constraints for a finite subset of C (Noyan and Rudolf, 2013).

 $\mathsf{CVaR}_{\alpha}(\mathbf{c}_{(l)}^{\top}\hat{\mathbf{G}}(\mathbf{x},\mathbf{y})) \leq \mathsf{CVaR}_{\alpha}(\mathbf{c}_{(l)}^{\top}\mathbf{Z}), \quad l = 1, \dots, \bar{L},$

where $\bm{c}_{(1)}, \bm{c}_{(2)}, \ldots, \bm{c}_{(\bar{L})}$ are projected extreme points of a higher dimensional polyhedron.

- Exponentially many constraints, corresponding to vertices of a polyhedron.
- Delayed Cut Generation algorithm generates vectors **c** as needed.
- For given $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$, solve the separation problem (SP):

$$(\mathsf{SP}) \quad \max_{\mathbf{c} \in \mathcal{C}} \quad \mathsf{CVaR}_{\alpha}(\mathbf{c}^{\top} \hat{\mathbf{G}}(\bar{\mathbf{x}}, \bar{\mathbf{y}})) - \mathsf{CVaR}_{\alpha}(\mathbf{c}^{\top} \mathbf{Z})$$

using an effective MIP formulation (K. and Noyan, 2016; Liu et al., 2017).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deterministic Equivalent Formulation (DEF)

• Based on the definition of CVaR and the sufficiency to consider a finite subset of scalarization vectors in set C, the corresponding DEF is

$$\begin{array}{ll} \text{(DEF)} & \min \ f(\mathbf{x}) + \sum_{s \in S} p_s \mathbf{q}_s^\top \mathbf{y}_s \\ & \overset{\text{CVaR}_{\alpha}(\hat{\mathbf{c}}_{(l)}^\top \hat{\mathbf{G}}(\mathbf{x}, \mathbf{y}))}{\mathbf{y}_l + \frac{1}{1 - \alpha} \sum_{s \in S} p_s w_{sl}} \leq \text{CVaR}_{\alpha}(\hat{\mathbf{c}}_{(l)}^\top \mathbf{Z}), \quad \forall \ l = 1, \dots, \bar{L}, \\ & w_{sl} \geq \hat{\mathbf{c}}_{(l)}^\top \hat{\mathbf{g}}_s(\mathbf{x}, \mathbf{y}_s) - \eta_l, \quad \forall \ s \in S, \ l = 1, \dots, \bar{L}, \\ & w_{sl} \geq 0, \quad \forall \ s \in S, \ l = 1, \dots, \bar{L}, \\ & \mathbf{x} \in \mathcal{X}, \quad \eta \in \mathbb{R}^{\bar{L}}, \\ & T_s \mathbf{x} + W_s \mathbf{y}_s \geq \mathbf{h}_s, \quad \forall \ s \in S, \\ & \mathbf{y}_s \in \mathbb{R}_{+2}^{n_s}, \quad \forall \ s \in S, \end{array} \right.$$

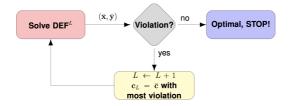
 $\hat{\mathbf{g}}_s(\mathbf{x}, \mathbf{y}_s)$ is the realization of the *d*-dimensional random outcome vector under scenario $s \in S$.

• Exponentially many constraints, corresponding to vertices of a polyhedron.

17/32

1. Delayed Cut Generation for DEF (DCG-DEF)

- Relies on successive relaxations of the multivariate polyhedral CVaR relation, and iteratively generates cuts associated with the scalarization vectors for which the risk constraints are violated.
- Starts with a small subset of $L \ll \overline{L}$ scalarization vectors and generates more as needed.
- DEF^L: a relaxation of DEF with L scalarization vectors.



 Solving a large scale DEF becomes computationally challenging as the number of scenarios increases.

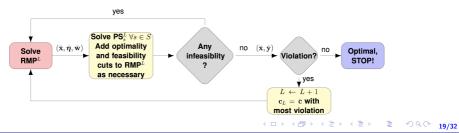
18/32

イロト イポト イヨト イヨト

2. Delayed Cut Generation with Scenario Decomposition (DCG-SD)

- Decompose the problem over scenarios by exploiting the structure of CVaR and second-stage problems.
- RMP^L: a relaxation of DEF with $L \ll \overline{L}$ scalarization vectors and only the decision variables $(\mathbf{x}, \boldsymbol{\eta}, \mathbf{w})$
- For given solution (x̄, η̄, w̄) at an iteration with L scalarization vectors, assuming ĝ_s(x, y) = ḡ_sx + g̃_sy, the subproblem for each scenario s ∈ S becomes an LP.

$$(\mathsf{PS}_{s}^{L}) \quad \min\left\{\mathbf{q}_{s}^{\top}\mathbf{y} \mid -\mathbf{c}_{(l)}^{\top}\tilde{\mathbf{g}}_{s}\mathbf{y} \geq \mathbf{c}_{(l)}^{\top}\bar{\mathbf{g}}_{s}\bar{\mathbf{x}} - \bar{\eta}_{l} - \bar{w}_{sl}, \ \forall \ l = 1, \dots, L, \quad \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}_{s})\right\}$$



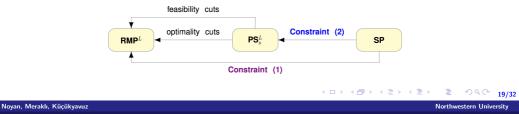
Noyan, Meraklı, Küçükyavuz

2. Delayed Cut Generation with Scenario Decomposition (DCG-SD)

- Decompose the problem over scenarios by exploiting the structure of CVaR and second-stage problems.
- RMP^L: a relaxation of DEF with $L \ll \overline{L}$ scalarization vectors and only the decision variables $(\mathbf{x}, \boldsymbol{\eta}, \mathbf{w})$
- For given solution (x̄, ŋ̄, w̄) at an iteration with L scalarization vectors, assuming ĝ_s(x, y) = ḡ_sx + g̃_sy, the subproblem for each scenario s ∈ S becomes an LP.

 $(\mathsf{PS}_{s}^{L}) \quad \min\left\{\mathbf{q}_{s}^{\top}\mathbf{y} \mid -\mathbf{c}_{(l)}^{\top}\tilde{\mathbf{g}}_{s}\mathbf{y} \geq \mathbf{c}_{(l)}^{\top}\bar{\mathbf{g}}_{s}\bar{\mathbf{x}} - \bar{\eta}_{l} - \bar{w}_{sl}, \ \forall \ l = 1, \dots, L, \quad \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}_{s})\right\}$

• Can be seen as a delayed column and cut generation algorithm.



Stochastic Pre-disaster Relief Network Design Problem

- Pre-positioning of relief supplies at strategic locations to improve the effectiveness of the immediate post-disaster response operations.
- Decide on the **locations and capacities of the response facilities** before a disaster strikes, when there is high level of uncertainty in supply (undamaged pre-stocked supplies), demand, and transportation network conditions (pre-disaster).
- **Distribute the relief items** to satisfy the demand across the network after uncertainty is revealed (post-disaster).

Northwestern University

20/32

・ロト ・同ト ・ヨト ・ヨト

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

Noyan, Meraklı, Küçükyavuz

Stochastic Pre-disaster Relief Network Design Problem

- Pre-positioning of relief supplies at strategic locations to improve the effectiveness of the immediate post-disaster response operations.
- Decide on the **locations and capacities of the response facilities** before a disaster strikes, when there is high level of uncertainty in supply (undamaged pre-stocked supplies), demand, and transportation network conditions (pre-disaster).
- **Distribute the relief items** to satisfy the demand across the network after uncertainty is revealed (post-disaster).

• Multiple critical criteria: sufficiency of the delivered relief items, accessibility of the relief supplies, equity in supply allocation, etc.

20/32

< ロ > < 同 > < 三 > < 三 >

Stochastic Pre-disaster Relief Network Design Problem

• Extensive literature on risk-neutral two-stage stochastic programs. (e.g., Balçık and Beamon, 2008; Döyen et al., 2012; Rawls and Turnquist, 2010; Salmerón and Apte, 2010)

• Only a few risk-averse stochastic models for the univariate case (e.g., Rawls and Turnquist, 2011; Noyan, 2012; Hong et al., 2015; Elci et al., 2018; Elci and Noyan, 2018).

21/32

Northwestern University

• We extend the risk-neutral stochastic model proposed in Rawls and Turnquist (2010) by enforcing a multivariate CVaR constraint.

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

Noyan, Meraklı, Küçükyavuz

Problem Formulation - Criteria of Interest

Critical multiple and possibly conflicting performance criteria (Sphere Project, 2011; Vitoriano et al., 2011; Huang et al., 2012; Gutjahr and Nolz, 2016):

- 1. Efficiency: low cost
- 2. Efficacy: quick and sufficient distribution
- 3. Equity: fairness in terms of supply allocation and response times

Noyan, Meraklı, Küçükyavuz ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events 22/32

イロト イポト イヨト イヨト

Problem Formulation - Criteria of Interest

Critical multiple and possibly conflicting performance criteria (Sphere Project, 2011; Vitoriano et al., 2011; Huang et al., 2012; Gutjahr and Nolz, 2016):

- 1. Efficiency: low cost
- 2. Efficacy: quick and sufficient distribution
- 3. Equity: fairness in terms of supply allocation and response times
- We address the efficiency and efficacy using a weighted-sum based objective.
 - Minimize the expected total cost of opening facilities, demand shortages, and purchasing and shipping the relief supplies.
- We address the responsiveness (efficacy) and equity (in terms of supply allocation) via the multivariate CVaR constraints.
 - 2-dimensional random vector in the CVaR benchmarking constraints.
 - $\mathbf{g}^1 \rightarrow \mathsf{Maximum}$ proportion of unsatisfied demand
 - $\mathbf{g}^2 \rightarrow \mathsf{Total}$ delivery amount-based average travel time score (ATS)

22/32

(日) (同) (王) (王) (王)

Computational Results - Case Study

- Disaster preparedness for the threat of hurricanes in the Southeastern part of the United States (Rawls and Turnquist, 2010)
- 30 demand nodes, each node is a candidate facility.
- Benchmark random outcome vector (Z) is computed based on the current practice of Federal Emergency Management Agency (FEMA).

Noyan, Meraklı, Küçükyavuz

23/32

Computational Results - Performance of the Solution Methods

- Intel(R) Xeon(R) CPU E5-2630 processor at 2.40 GHz and 32 GB of RAM using Java and Cplex 12.6.0.
- Results averaged over 3 replications, 1 hour time limit

		DCG-DEF		DCG-SD		
α	# Sce.	Time (s) / [%gap]	L	Time (s) / [%gap]	# Cuts	L
	400	2622.4	3.7	351.5	18569.7	5.3
0.99	500	3071.3	3.0	363.3	20805.0	4.3
	600	[0.2] [†] **	-	662.1	27068.7	5.0
	1000	***	-	1594.2	43934.0	5.3
	1500	***	-	3450.6 <mark>[0.4]^{††}</mark>	62436.0	4.0
	400	3392.7	1.7	536.8	20633.3	4.0
0.95	500	2753.2 <mark>[0.2][†]</mark>	1.5	671.9	23045.0	3.3
	600	[0.1] ^{††} *	-	878.0	26151.3	3.3
	1000	***	-	1857.7	42229.3	3.3
	1500	***	-	3390.1 [1.4] ^{††}	52294.0	2.0
	400	2263.0	1.3	623.9	19482.3	3.3
0.90	500	1660.2 <mark>[0.3]</mark> †	1.0	1392.1	25358.0	3.3
	600	2264.3 [0.1] ^{††}	1.0	857.5 [7.9] †	30051.0	3.0

† (*): Each dagger (asterisk) sign indicates one instance hitting the time limit with an integer (no integer) feasible solution.

24/32

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Model Analysis

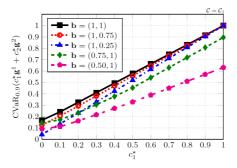
- Value of risk-aversion: Risk-averse solutions vs those of base model without the multivariate risk constraint, denoted as Z^N.
- Sensitivity to choice of benchmark: Benchmark outcome vector Z = b ∘ Z^N = (b₁Z₁^N, b₂Z₂^N), where b is a two-dimensional vector of (benchmark) control parameters.
 - Using smaller values of b corresponds to enforcing more demanding benchmarking constraints to ensure a better performance than Z^N.
- Sensitivity to choice of scalarization sets: Set $C = C_{\gamma} = \{ \mathbf{c} \in \mathbb{R}^2_+ : c_1 + c_2 = 1, c_2 \ge \gamma c_1 \}$ for $\gamma \ge 0$.
 - The parameter γ controls the inclusiveness of different views on the relative importance of multiple criteria.
 - C_{γ} enlarges as γ decreases; $C_{\gamma \to \infty}$ converges to a set with single element (0, 1) and C_0 corresponds to the unit simplex.

25/32

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Value of incorporating risk-aversion

- Benchmark outcome vector $\mathbf{Z} = \mathbf{b} \circ \mathbf{Z}^N = (\mathbf{b}_1 Z_1^N, \mathbf{b}_2 Z_2^N).$
- $Z = Z^N$ for b = (1, 1).
- $\mathbf{c}^* = (1,0) \rightarrow$ univariate CVaR value w.r.t. equity criterion $\mathbf{c}^* = (0,1) \rightarrow$ univariate CVaR value w.r.t. responsiveness criterion



• The risk-averse model provides better solutions than base in terms of equity and/or responsiveness measures according to the univariate CVaR-preferability.

26/32

(ロト (過下 (目下 (日下)

Risk-averse solutions

• For benchmark base model, $\mathbb{P}(\max \text{ proportion of unmet demand}=1)=0.1$.

Noyan, Meraklı, Küçükyavuz ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

Risk-averse solutions

Noyan, Meraklı, Küçükyavuz

- For benchmark base model, ℙ(max proportion of unmet demand=1)=0.1. Highly undesirable.
- Risk-constrained model with $\mathbf{b} = (0.75, 1)$:
 - Equity: $\mathbb{E}(\max \text{ proportion of unmet demand}) \downarrow 45\%, \mbox{CVaR}_{0.9}(\max \text{ proportion of unmet demand}) \downarrow 10\%$
 - Responsiveness: $\mathbb{E}(ATS) \uparrow 9\%$, $CVaR_{0.9}(ATS) \downarrow 14\%$
 - Efficiency: $\mathbb{E}(\text{total cost}) \uparrow 10\%$

27/32

Risk-averse solutions

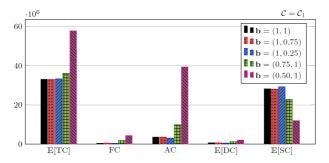
- For benchmark base model, ℙ(max proportion of unmet demand=1)=0.1. Highly undesirable.
- Risk-constrained model with $\mathbf{b} = (0.75, 1)$:
 - Equity: $\mathbb{E}(\max \text{ proportion of unmet demand}) \downarrow 45\%, \mbox{CVaR}_{0.9}(\max \text{ proportion of unmet demand}) \downarrow 10\%$
 - Responsiveness: $\mathbb{E}(ATS) \uparrow 9\%$, $CVaR_{0.9}(ATS) \downarrow 14\%$
 - Efficiency: $\mathbb{E}(\text{total cost}) \uparrow 10\% \text{No free lunch}!$
- Risk-averse solutions stock more inventory as benchmarks get stricter for either criterion and for larger scalarization sets.

Noyan, Meraklı, Küçükyavuz

27/32

Cost of incorporating risk-aversion under varying benchmarks **b**

Expected total cost (TC) and its components: the total facility setup cost (FC), the total acquisition cost (AC), the total distribution cost (DC), the total demand shortage cost (SC)



- $\mathbb{E}(\mathsf{TC})$ is not affected much by stricter responsiveness requirements ($b_2 < 1$)
- For stricter equity requirement with b₁ = 0.75, modest increase in 𝔅(TC), with CVaR_{0.9}(prop unmet demand) ↓ 10%, CVaR_{0.9}(ATS) ↓ 14%

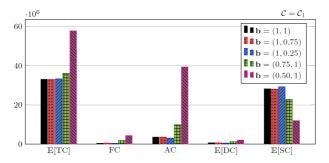
Noyan, Meraklı, Küçükyavuz

28/32

イロト イポト イヨト イヨト

Cost of incorporating risk-aversion under varying benchmarks **b**

Expected total cost (TC) and its components: the total facility setup cost (FC), the total acquisition cost (AC), the total distribution cost (DC), the total demand shortage cost (SC)



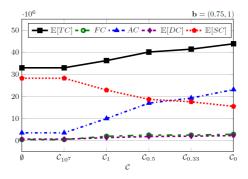
- $\mathbb{E}(\mathsf{TC})$ is not affected much by stricter responsiveness requirements ($b_2 < 1$)
- For stricter equity requirement with b₁ = 0.75, modest increase in 𝔅(TC), with CVaR_{0.9}(prop unmet demand) ↓ 10%, CVaR_{0.9}(ATS) ↓ 14%
- For (even) stricter equity requirement with $b_1 = 0.50$, significant increase in $\mathbb{E}(TC)$, with $\text{CVaR}_{0.9}(\text{prop unmet demand}) \downarrow 37\%$, $\text{CVaR}_{0.9}(\text{ATS}) \downarrow 45\%$

28/32

Cost of incorporating risk-aversion under varying scalarization sets C_{γ} .

Expected total cost (TC) and its components:

the total facility setup cost (FC), the total acquisition cost (AC), the total distribution cost (DC), the total demand shortage cost (SC)



• $\mathbb{E}(\mathsf{TC})$ increases as larger set of opinions are considered (e.g., \mathcal{C}_0)

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events

29/32

イロト イヨト イヨト イヨト

Summary of Model Analysis

- Risk-averse model provides **better solutions in terms of equity and/or responsiveness** measures according to the univariate CVaR-preferability while **compromising from the expected total cost**.
 - The trade-off between equity, responsiveness and cost can be controlled via varying the benchmark, the scalarization set and the confidence level.
- The risk-averse policies tend to open more and larger facilities, and stock more inventory.
- The results demonstrate the flexibility of the proposed modeling approach to provide a wide range of solutions that are inclusively aligned with multiple decision makers having different opinions on the relative importance of each criterion.

30/32

Conclusions

- Introduce a new class of risk-averse two-stage optimization models with multivariate CVaR constraints.
 - Provide a flexible and tractable way of considering decision makers' risk preferences based on multiple stochastic criteria.
- In addition, we consider the second-order stochastic dominance (SSD)-based counterpart and provide a new computationally tractable and exact solution algorithm for this problem class.
- We propose an exact unified decomposition framework for solving these two classes of optimization problems and show its finite convergence.
- Applied proposed methods to a stochastic pre-disaster relief network design problem.
 - Our numerical results on these large-scale problems show that our proposed algorithm is computationally scalable.

31/32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

Noyan, Meraklı and Küçükyavuz, Two-stage stochastic programming under multivariate risk constraints with an application to humanitarian relief network design. Forthcoming, *Mathematical Programming*, 2019.

Meraklı and Küçükyavuz, Vector-Valued Multivariate Conditional Value-at-Risk, *Operations Research Letters*, 46(3), 300-305, 2018.

Liu, Küçükyavuz and Noyan, Robust Multicriteria Risk-Averse Stochastic Programming Models, *Annals of Operations Research*, 259(1), 259-294, 2017.

Küçükyavuz and Noyan, Cut Generation for Optimization Problems with Multivariate Risk Constraints, *Mathematical Programming*, 159(1), 165-199, 2016.

32/32