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Two-Stage Stochastic Programming under Multivariate Risk Constraints

Agenda

• Motivation: Risk-averse decision making in humanitarian logistics

• Two-stage stochastic programming under multivariate risk constraints

◦ Delayed Cut Generation for Deterministic Equivalent Formulation
(DCG-DEF)

◦ Delayed Cut Generation with Scenario Decomposition (DCG-SD)

• Application to a pre-disaster relief network design problem

• Concluding remarks
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Natural disasters: Putting things into perspective. . .

1999 İzmit Earthquake in Turkey: More than 17,000 fatalities and an estimated
500,000 left homeless.

“In 2017, 335 natural disasters affected over 95.6 million people, killing an
additional 9,697 and costing a total of US $335 billion.”CRED, Annual Disaster Statistical Review 2017.

Need for efficient and effective disaster relief systems!

Noyan, Meraklı, Küçükyavuz Northwestern University
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Natural disasters: Putting things into perspective. . .

• Large volumes of demand for relief items (medical supplies, water, food etc.)
in the immediate aftermath of disaster.

• Transportation network could be severely damaged.

Noyan, Meraklı, Küçükyavuz Northwestern University
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Pre-disaster relief network design problem

• Common strategy: pre-positioning of relief supplies at strategic locations to
improve the effectiveness of the immediate post-disaster response operations.

• At the time of decision making, there is high level of uncertainty in supply
(undamaged pre-stocked supplies), demand, and transportation network
conditions.

• Multiple critical issues for pre-disaster
relief network design (aside from cost):

• Meeting basic needs of most of the
affected population,

• Ensuring accessibility of the relief supplies,

• Ensuring equity in supply allocation, etc.

• Multiple stakeholders with different perspectives
• government, community, non-governmental organizations (NGOs), engineers,

sponsors etc.
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Risk-averse stochastic optimization in humanitarian logistics

• Would the decision makers be indifferent to a small probability that
• A million people do not have access to medical care?
• Certain locations do not have access to medical care?

• Need to consider a wide range of possible outcomes, not just the most likely
or worst-case scenario, for multiple sources of risk.

• Risk-averse stochastic optimization problems provide the flexibility to
capture a wider range of risk attitudes.

• We aim to propose risk-averse optimization models and solution algorithms
that consider

- Multiple sources of risk (cost, accessibility, equity)

- A group of decision makers with different opinions on the importance
(weight) of each criteria (government, community, NGOs)

in a two-stage decision making framework.
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Two-Stage Decision Making Framework

• First-stage actions (x) → observe randomness → Second-stage actions (y)
(Pre-disaster) (Disaster) (Post-disaster)

• The first-stage decisions are made before the uncertainty is resolved.

- e.g., humanitarian relief facility location and inventory level decisions.

• The second-stage (recourse) decisions are made after the uncertainty is
resolved. Represent the operational decisions, which depend on the realized
values of the random data.

- e.g., distribution of the relief supplies (allocation decisions).

• A finite probability space (Ω, 2Ω ,Π) with Ω = {ω1, . . . , ωm} and
Π(ωs) = ps , s ∈ S := {1, . . . ,m}.

• The general form of a risk-neutral two-stage stochastic programming model:

min
x∈X

f (x) +E(Q(x, ξ(ω)))

Q(x, ξ(ωs)) = min
ys∈Y(x,ξ(ωs ))

q>s ys , Y(x, ξ(ωs)) = {ys ∈ Rn2
+ : Tsx+Wsys ≥ hs}

Noyan, Meraklı, Küçükyavuz Northwestern University
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Two-Stage Stochastic Programming with Multivariate
Stochastic Preference Constraints

Given

- a benchmark (reference) random outcome vector Z ∈ Rd

- multivariate risk-based preference relation <
(“A < B” implies A is preferable to B w.r.t. its risk)

A class of risk-averse two-stage optimization problems:

min f (x) +E(Q(x, ξ(ω)))

s.t. Ĝ(x, y) < Z,

x ∈ X ,
Q(x, ξ(ωs)) = q>s y(ωs), ∀s ∈ S ,

y(ωs) ∈ Y(x, ξ(ωs)), ∀s ∈ S .

Decision-based d-dimensional random outcome vector:[
Ĝ(x, y)

]
(ω) = Ĝ(x, y(ω), ξ(ω)).

Noyan, Meraklı, Küçükyavuz Northwestern University
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How to measure risk?
Conditional Value-at-Risk (CVaR) for assessing the univariate risk

• Desirable risk measure (Artzner et al., 1999; Kusuoka, 2001)

• Easy to incorporate into optimization problems (convexity)

V : univariate random variable that takes value vi with probability pi ,
i ∈ [n] := {1, . . . , n}. For confidence level α,

CVaRα(V ) = inf

{
η +

1

1− α
E([V − η]+), η ∈ R

}
,

= min η +
1

1− α

n∑
i=1

piwi

s.t. wi ≥ vi − η, wi ≥ 0, i ∈ [n].

• CVaRα(V ): “If we are unlucky and do worse than α-quantile, then the
expected outcome is CVaRα(V ).”

Noyan, Meraklı, Küçükyavuz Northwestern University
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Challenges

• How to define vector-valued risk?

• Vector-valued VaR (p-efficient points) well-defined (Prekopa)

• Meraklı and K. (2018) discuss issues with existing definitions of vector-valued
CVaR (e.g., CVaR<VaR in some definitions)

• and propose a new definition

– Hard to compute

• Need to compare two (decision-dependent) random vectors?

Noyan, Meraklı, Küçükyavuz Northwestern University
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Multivariate Stochastic Preference Relations

Establish preference relations between two d-dimensional random vectors

(X1,X2, . . . ,Xd) < (Z1,Z2, . . . ,Zd)

• Considering multiple risk factors, a natural approach is to use univariate
preference relations under a scalarization scheme.

• Linear scalarization for random vector X ∈ Rd based on vector c ∈ Rd :

c>X = c1X1 + · · ·+ cdXd < c>Z.

• ci : relative importance of criterion i

• How to choose one c?

Relative importance of risk factors (c) is usually
ambiguous and may be inconsistent especially in the presence of multiple
decision makers.
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Multivariate Stochastic Preference Relations

Establish preference relations between two d-dimensional random vectors

(X1,X2, . . . ,Xd) < (Z1,Z2, . . . ,Zd)

• Extend univariate stochastic preference relations to the multivariate case by
considering a family of scalarization vectors, C.

• Require that the scalarized versions of vector-valued random variables
conform to some scalar-based preference relation (Dentcheva and
Ruszczynski, 2009).

Linear scalarization: c>X = c1X1 + · · ·+ cdXd < c>Z ∀ c ∈ C

• Coefficient ci represents subjective importance of criteria i , i ∈ {1, . . . , d}.

• Set C corresponds to different opinions of possibly multiple decision
makers on the relative importance of criteria.

• Our main focus: Univariate risk measure - Conditional value-at-risk
(CVaR) (Rockafellar and Uryasev, 2000, 2002).

• Polyhedral multivariate CVaR relation (Noyan and Rudolf, 2013): Given a
set of scalarization vectors C ⊂ Rd and a confidence level α ∈ [0, 1), X is
preferable to Z if

CVaRα(c>X) ≤ CVaRα(c>Z), ∀ c ∈ C.

• We introduce a new class of risk-averse two-stage stochastic programming
problems with polyhedral multivariate CVaR constraints.

Noyan, Meraklı, Küçükyavuz Northwestern University
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Related Studies on Optimization with the Multivariate
Stochastic Benchmarking Constraints

• Multivariate second-order stochastic dominance(SSD)-constrained
problems gained more attention in the literature (see, e.g., Dentcheva and
Ruszczynski, 2009; Homem-de-Mello and Mehrotra, 2009; Hu et al., 2012;
Dentcheva and Wolfhagen, 2015, 2016).

• SSD-based models are conservative and demanding, often leading to
infeasibilities.

• A few studies consider CVaR-based models as a natural relaxation of the
SSD-based models (see, e.g., Noyan and Rudolf, 2013; Liu et al., 2016).

• Some of the recent studies consider both (Küçükyavuz and Noyan, 2016;
Noyan and Rudolf, 2016).

• All except Dentcheva and Wolfhagen (2015) study single-stage (static)
decision making problems.

Noyan, Meraklı, Küçükyavuz Northwestern University
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Problem Formulation

x, y: first- and second-stage decision vectors, respectively

ξ(ω): random vector defined on a finite probability space with Ω = {ωi : i ∈ S}
Ĝ(x, y): the d-dimensional random outcome vector representing the multiple
random performance measures of interest associated with the first- and
second-stage decisions

Z: a given benchmark (reference) random outcome vector

C: a given scalarization set, i.e. C ⊆ Cf = {c ∈ Rd
+ |

∑d
i=1 ci = 1}

min f (x) +
∑
s∈S

psQ(x, ξ(ωs))

s.t. CVaRα(c>Ĝ(x, y)) ≤ CVaRα(c>Z), ∀ c ∈ C,
x ∈ X ,
Q(x, ξ(ωs)) = q>s y(ωs), ∀s ∈ S ,

y(ωs) ∈ Y(x, ξ(ωs)), ∀s ∈ S ,

Challenge: Infinitely many CVaR constraints.

Noyan, Meraklı, Küçükyavuz Northwestern University
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Towards a Tractable Formulation

• It is sufficient to consider CVaR benchmarking constraints for a finite subset
of C (Noyan and Rudolf, 2013).

CVaRα(c>(l)Ĝ(x, y)) ≤ CVaRα(c>(l)Z), l = 1, . . . , L̄,

where c(1), c(2), . . . , c(L̄) are projected extreme points of a higher dimensional
polyhedron.

• Exponentially many constraints, corresponding to vertices of a polyhedron.

• Delayed Cut Generation algorithm generates vectors c as needed.

• For given (x̄, ȳ), solve the separation problem (SP):

(SP) max
c∈C

CVaRα(c>Ĝ(x̄, ȳ))− CVaRα(c>Z)

using an effective MIP formulation (K. and Noyan, 2016; Liu et al., 2017).

Noyan, Meraklı, Küçükyavuz Northwestern University
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Deterministic Equivalent Formulation (DEF)
• Based on the definition of CVaR and the sufficiency to consider a finite

subset of scalarization vectors in set C, the corresponding DEF is

(DEF) min f (x) +
∑
s∈S

psq
>
s ys

s.t.

CVaRα(ĉ>(l)Ĝ(x,y))︷ ︸︸ ︷
ηl +

1

1− α
∑
s∈S

pswsl ≤ CVaRα(ĉ>(l)Z), ∀ l = 1, . . . , L̄, (1)

wsl ≥ ĉ>(l)ĝs(x, ys)− ηl , ∀ s ∈ S , l = 1, . . . , L̄, (2)

wsl ≥ 0, ∀ s ∈ S , l = 1, . . . , L̄,

x ∈ X , η ∈ RL̄,

Tsx + Wsys ≥ hs , ∀ s ∈ S ,

ys ∈ Rn2
+ , ∀ s ∈ S ,

ĝs(x, ys) is the realization of the d-dimensional random outcome vector
under scenario s ∈ S .

• Exponentially many constraints, corresponding to vertices of a polyhedron.

Noyan, Meraklı, Küçükyavuz Northwestern University
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1. Delayed Cut Generation for DEF (DCG-DEF)

• Relies on successive relaxations of the multivariate polyhedral CVaR relation,
and iteratively generates cuts associated with the scalarization vectors for
which the risk constraints are violated.

• Starts with a small subset of L� L̄ scalarization vectors and generates more
as needed.

• DEFL: a relaxation of DEF with L scalarization vectors.

• Solving a large scale DEF becomes computationally challenging as the
number of scenarios increases.

Noyan, Meraklı, Küçükyavuz Northwestern University
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2. Delayed Cut Generation with Scenario Decomposition (DCG-SD)

• Decompose the problem over scenarios by exploiting the structure of CVaR
and second-stage problems.

• RMPL: a relaxation of DEF with L� L̄ scalarization vectors and only the
decision variables (x,η,w)

• For given solution (x̄, η̄, w̄) at an iteration with L scalarization vectors,
assuming ĝs(x, y) = ḡsx + g̃sy, the subproblem for each scenario s ∈ S
becomes an LP.

(PSL
s ) min

{
q>s y | −c>(l)g̃sy ≥ c>(l)ḡs x̄− η̄l − w̄sl , ∀ l = 1, . . . , L, y ∈ Y(x, ξs)

}

• Can be seen as a delayed column and cut generation algorithm.
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Stochastic Pre-disaster Relief Network Design Problem

• Pre-positioning of relief supplies at strategic locations to improve the
effectiveness of the immediate post-disaster response operations.

• Decide on the locations and capacities of the response facilities before a
disaster strikes, when there is high level of uncertainty in supply (undamaged
pre-stocked supplies), demand, and transportation network conditions
(pre-disaster).

• Distribute the relief items to satisfy the demand across the network after
uncertainty is revealed (post-disaster).

• Multiple critical criteria: sufficiency of the delivered relief items, accessibility
of the relief supplies, equity in supply allocation, etc.

Noyan, Meraklı, Küçükyavuz Northwestern University

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events



20/32

Two-Stage Stochastic Programming under Multivariate Risk Constraints

Stochastic Pre-disaster Relief Network Design Problem

• Pre-positioning of relief supplies at strategic locations to improve the
effectiveness of the immediate post-disaster response operations.

• Decide on the locations and capacities of the response facilities before a
disaster strikes, when there is high level of uncertainty in supply (undamaged
pre-stocked supplies), demand, and transportation network conditions
(pre-disaster).

• Distribute the relief items to satisfy the demand across the network after
uncertainty is revealed (post-disaster).

• Multiple critical criteria: sufficiency of the delivered relief items, accessibility
of the relief supplies, equity in supply allocation, etc.
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Stochastic Pre-disaster Relief Network Design Problem

• Extensive literature on risk-neutral two-stage stochastic programs. (e.g.,
Balçık and Beamon, 2008; Döyen et al., 2012; Rawls and Turnquist, 2010;
Salmerón and Apte, 2010)

• Only a few risk-averse stochastic models for the univariate case (e.g.,
Rawls and Turnquist, 2011; Noyan, 2012; Hong et al., 2015; Elci et al.,
2018; Elci and Noyan, 2018).

• We extend the risk-neutral stochastic model proposed in Rawls and
Turnquist (2010) by enforcing a multivariate CVaR constraint.
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Problem Formulation - Criteria of Interest
Critical multiple and possibly conflicting performance criteria (Sphere Project,
2011; Vitoriano et al., 2011; Huang et al., 2012; Gutjahr and Nolz, 2016):

1. Efficiency: low cost

2. Efficacy: quick and sufficient distribution

3. Equity: fairness in terms of supply allocation and response times

• We address the efficiency and efficacy using a weighted-sum based objective.

• Minimize the expected total cost of opening facilities, demand shortages, and
purchasing and shipping the relief supplies.

• We address the responsiveness (efficacy) and equity (in terms of supply
allocation) via the multivariate CVaR constraints.

• 2-dimensional random vector in the CVaR benchmarking constraints.

g1 → Maximum proportion of unsatisfied demand
g2 → Total delivery amount-based average travel time score (ATS)
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Computational Results - Case Study

• Disaster preparedness for the threat of hurricanes in the Southeastern part of
the United States (Rawls and Turnquist, 2010)

• 30 demand nodes, each node is a candidate facility.

• Benchmark random outcome vector (Z) is computed based on the current
practice of Federal Emergency Management Agency (FEMA).
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Computational Results - Performance of the Solution Methods

• Intel(R) Xeon(R) CPU E5-2630 processor at 2.40 GHz and 32 GB of RAM using
Java and Cplex 12.6.0.

• Results averaged over 3 replications, 1 hour time limit

DCG-DEF DCG-SD
α # Sce. Time (s) / [%gap] L Time (s) / [%gap] # Cuts L

400 2622.4 3.7 351.5 18569.7 5.3
0.99 500 3071.3 3.0 363.3 20805.0 4.3

600 [0.2]†∗∗ - 662.1 27068.7 5.0
1000 ∗∗∗ - 1594.2 43934.0 5.3
1500 ∗∗∗ - 3450.6 [0.4]†† 62436.0 4.0
400 3392.7 1.7 536.8 20633.3 4.0

0.95 500 2753.2 [0.2]† 1.5 671.9 23045.0 3.3
600 [0.1]††∗ - 878.0 26151.3 3.3

1000 ∗∗∗ - 1857.7 42229.3 3.3
1500 ∗∗∗ - 3390.1 [1.4]†† 52294.0 2.0
400 2263.0 1.3 623.9 19482.3 3.3

0.90 500 1660.2 [0.3]† 1.0 1392.1 25358.0 3.3
600 2264.3 [0.1]†† 1.0 857.5 [7.9]† 30051.0 3.0

† (∗) : Each dagger (asterisk) sign indicates one instance hitting
the time limit with an integer (no integer) feasible solution.
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Model Analysis

• Value of risk-aversion: Risk-averse solutions vs those of base model
without the multivariate risk constraint, denoted as ZN .

• Sensitivity to choice of benchmark: Benchmark outcome vector
Z = b ◦ ZN = (b1Z

N
1 , b2Z

N
2 ), where b is a two-dimensional vector of

(benchmark) control parameters.

• Using smaller values of b corresponds to enforcing more demanding
benchmarking constraints to ensure a better performance than ZN .

• Sensitivity to choice of scalarization sets: Set
C = Cγ = {c ∈ R2

+ : c1 + c2 = 1, c2 ≥ γc1} for γ ≥ 0.

• The parameter γ controls the inclusiveness of different views on the relative
importance of multiple criteria.

• Cγ enlarges as γ decreases; Cγ→∞ converges to a set with single element
(0, 1) and C0 corresponds to the unit simplex.
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Value of incorporating risk-aversion

• Benchmark outcome vector Z = b ◦ ZN = (b1Z
N
1 , b2Z

N
2 ).

• Z = ZN for b = (1, 1).

• c∗ = (1, 0) → univariate CVaR value w.r.t. equity criterion
c∗ = (0, 1) → univariate CVaR value w.r.t. responsiveness criterion

• The risk-averse model provides better solutions than base in terms of equity
and/or responsiveness measures according to the univariate
CVaR-preferability.

Noyan, Meraklı, Küçükyavuz Northwestern University

ICERM - Mathematical Optimization of Systems Impacted by Rare, High-Impact Random Events



27/32

Two-Stage Stochastic Programming under Multivariate Risk Constraints

Risk-averse solutions

• For benchmark base model, P(max proportion of unmet demand=1)=0.1.

Highly undesirable.

• Risk-constrained model with b = (0.75, 1):

• Equity: E(max proportion of unmet demand) ↓ 45%, CVaR0.9(max proportion
of unmet demand) ↓ 10%

• Responsiveness: E(ATS) ↑ 9%, CVaR0.9(ATS) ↓ 14%

• Efficiency: E(total cost) ↑ 10% – No free lunch!

• Risk-averse solutions stock more inventory as benchmarks get stricter for
either criterion and for larger scalarization sets.
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Cost of incorporating risk-aversion under varying benchmarks b
Expected total cost (TC) and its components:
the total facility setup cost (FC), the total acquisition cost (AC), the total
distribution cost (DC), the total demand shortage cost (SC)

• E(TC) is not affected much by stricter responsiveness requirements (b2 < 1)

• For stricter equity requirement with b1 = 0.75, modest increase in E(TC),
with CVaR0.9(prop unmet demand) ↓ 10%, CVaR0.9(ATS) ↓ 14%

• For (even) stricter equity requirement with b1 = 0.50, significant increase in
E(TC), with CVaR0.9(prop unmet demand) ↓ 37%, CVaR0.9(ATS) ↓ 45%
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Cost of incorporating risk-aversion under varying scalarization
sets Cγ.

Expected total cost (TC) and its components:
the total facility setup cost (FC), the total acquisition cost (AC), the total
distribution cost (DC), the total demand shortage cost (SC)

• E(TC) increases as larger set of opinions are considered (e.g., C0)
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Summary of Model Analysis

• Risk-averse model provides better solutions in terms of equity and/or
responsiveness measures according to the univariate CVaR-preferability
while compromising from the expected total cost.

• The trade-off between equity, responsiveness and cost can be controlled via
varying the benchmark, the scalarization set and the confidence level.

• The risk-averse policies tend to open more and larger facilities, and stock
more inventory.

• The results demonstrate the flexibility of the proposed modeling approach to
provide a wide range of solutions that are inclusively aligned with multiple
decision makers having different opinions on the relative importance of
each criterion.
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Conclusions

• Introduce a new class of risk-averse two-stage optimization models with
multivariate CVaR constraints.

- Provide a flexible and tractable way of considering decision makers’ risk
preferences based on multiple stochastic criteria.

• In addition, we consider the second-order stochastic dominance (SSD)-based
counterpart and provide a new computationally tractable and exact solution
algorithm for this problem class.

• We propose an exact unified decomposition framework for solving these two
classes of optimization problems and show its finite convergence.

• Applied proposed methods to a stochastic pre-disaster relief network design
problem.

- Our numerical results on these large-scale problems show that our proposed
algorithm is computationally scalable.
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Liu, Küçükyavuz and Noyan, Robust Multicriteria Risk-Averse Stochastic
Programming Models, Annals of Operations Research, 259(1), 259-294,
2017.
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